Точка, линия, прямая, луч, отрезок, ломанная. Олимпиадные, логические и занимательные задачи по математике. Задачи на разрезание прямая линия AB

Саркисян Роман

Исследовательская работа «Задачи на разрезание» выполнена учениками 8 класса

Учащимися приводятся и исследуются приемы разрезания фигур в играх «Пентамино», «Танграмм», головоломках, доказательстве теорем.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Предварительный просмотр:

Научно -исследовательская работа на тему

«Задачи на разрезание»

Выполнили: Саркисян Роман, Шаврова Анастасия,

учащиеся 8 класса

МБОУ «Северомуйская СОШ»

Руководитель: учитель математики Огаркова И.И

  1. Введение
  2. Историческая справка
  3. Игра «Пентамино»
  4. Игра «Танграм»
  5. Задача «Торт»
  6. Задача №4- «Разрежь прямоугольник»
  7. Задача №5 - «Разрежь два квадрата»
  8. Задача №6- «Разрежь два квадрата-2»
  9. Задача №7 – Крест
  10. Задача №8 – Крест -2
  11. Задача №9- Квадрат 8*8
  12. Задача №10 Площадь параллелограмма
  13. Задача №11 Площадь трапеции
  14. Задача №12 Площадь треугольника
  15. Заключение
  16. Литература.

Введение

«Решение задач – практическое искусство, подобное

плаванию, катанию на лыжах или игре на фортепиано;

научиться ему можно, только подражая хорошим

образцам и постоянно практикуясь»

Д. Пойя

Увлечение математикой часто начинается с размышления над какой-то особенно понравившейся задачей. Богатым источником таких задач служат различные олимпиады – школьные, городские, дистанционные, международные. Готовясь к олимпиадам, мы рассмотрели множество разноплановых заданий и выделили группу задач, подход к решению которых нам показался интересным и оригинальным. Это задачи на разрезание. У нас возникали вопросы: в чём заключается особенность таких задач, существуют ли специальные методы и приёмы решения задач на разрезание.

Актуальность (Слайд 2)

  1. Математики открывают новые связи между математическими объектами. В результате этой работы находятся общие методы для решения различных задач. И эти задачи получают стандартные методы решения, переходя из разряда творческих в разряд технических, то есть требующих для своего решения применения уже известных методов.
  2. Задачи на разрезание помогают как можно раньше формировать геометрические представления у школьников на разнообразном материале. При решении таких задач возникает ощущение красоты, закона и порядка в природе.

Объект исследования : задачи на разрезание

Предмет исследования : многообразие задач на разрезание, методы и приёмы их решения.

Методы исследования : моделирование, сравнение, обобщение, аналогии, изучение литературных и Интернет-ресурсов, анализ и классификация информации.

(Слайд3) Основная цель исследования заключается в расширении знаний о многообразии задач на разрезание.

Для достижения поставленной цели предусматриваем решение следующих задач: (Слайд 4)

  1. подобрать необходимую литературу
  2. научиться разрезать геометрические фигуры на части, необходимые для составления той или иной другой геометрической фигуры, используя их свойства и признаки;
  3. научиться доказывать, что площади фигур равны, разрезая их на определенные части и доказывая, что эти фигуры равносоставленные;
  4. провести геометрическое исследование, конструирование в решении задач различных типов.
  5. отобрать материал для исследования, выбрать главную, интересную, понятную информацию
  6. проанализировать и систематизировать полученную информацию
  7. найти различные методы и приёмы решения задач на разрезание
  8. классифицировать исследуемые задачи
  9. найти способы перекраивания: треугольника в равносоставленный параллелограмм; параллелограмма в равносоставленный треугольник; трапеции в равносоставленный треугольник.
  10. Создать электронную презентацию работы

Гипотеза: возможно, многообразие задач на разрезание, их «занимательность», отсутствие общих правил и методов решения вызывают у школьников затруднения при их рассмотрении. Предположим, что при более внимательном исследовании задач на разрезание, мы убедимся в их востребованности, оригинальности, полезности.

При решении задач на разрезание нам не понадобится знание основ планиметрии, а будут нужны именно смекалка, геометрическое воображение и достаточно простые геометрические сведения, которые известны всем.

(Слайд 5) Историческая справка

Задачи на разрезание, как один из видов головоломок, привлекали к себе внимание с древнейших времен. Первый трактат, в котором рассматриваются задачи на разрезание, написал знаменитый арабский астроном и математик из Хорасана Абу аль – Вефа (940 – 998 н.э.). В начале XX века благодаря бурному росту периодических изданий решение задач на разрезание фигур на то или иное число частей и последующее составление из них новой фигуры привлекает внимание как средство развлечения широких слоев общества. Теперь и геометры всерьёз занялись этими задачами, тем более, что в их основе лежит старинная задача о равновеликих и равносоставленных фигурах, которая исходит еще от античных геометрах. Известными специалистами в этом разделе геометрии были знаменитые классики занимательной геометрии и составители головоломок Генри Э. Дьюдени и Гарри Линдгрен.

Энциклопедией решения различных задач на разрезание является книга Гарри Линдгрена «Геометрия разрезаний». В этой книге можно найти рекорды по разрезанию многоугольников на заданные фигуры

Рассматривая решения задач на разрезание понимаешь, что универсального алгоритма или метода не существует. Иногда начинающий геометр в своем решении может значительно превзойти более опытного человека. Это простота и доступность является основой популярности игр основанных на решении таких задач, например - (Слайд 6) пентамино «родственницы» тетриса, танграмма.

(Слайд7) Игра «Пентамино» Правила игры

Суть игры заключается в конструировании на плоскости разнообразных предметных силуэтов. Игра заключается в складывании различных фигур из заданного набора пентамино. Набор пентамино содержит 12 фигурок, каждая из которых составлена из пяти одинаковых квадратов, причём квадраты «соседствуют» друг с другом только сторонами.

Игра «Танграмм» (Слайд 8)

В игре « танграмм», из семи базовых элементов можно сложить значительное множество фигур. Все собираемые фигуры должны иметь равную площадь, т.к. собираются из одинаковых элементов. Отсюда следует что:

  1. В каждую собираемую фигуру должны войти непременно все семь элементов.
  2. При составлении фигуры элементы не должны налегать друг на друга, т.е. располагаться только в одной плоскости.
  3. Элементы фигур должны примыкать один к другому.

Задания

В игре танграмм можно выделить 3 основные категории заданий:

  1. Поиск одного или нескольких способов построения данной фигуры или изящного доказательства невозможности построения фигуры.
  2. Нахождение способа, позволяющего с наибольшей выразительностью или юмором (или тем и другим вмести) изобразить силуэты животных, людей и другие узнаваемые предметы.
  3. Решение различных задач комбинаторной геометрии, возникающих в связи с составлением фигур из 7 танов.

Задача 3 (Слайд 9)

Торт , украшенный розочками, тремя прямолинейными разрезами разделили на куски так, что на каждом куске оказалось, ровно по одной розочке. Какое наибольшее число розочек могло быть на торте?

Комментарий. В основе решения задачи лежит применение аксиомы: «Прямая разбивает плоскость на две полуплоскости». Следует изобразить всевозможные случаи расположения трех прямых. Из рисунка становится, что наибольшее число частей – 7 – получается, когда прямые пересекаются попарно. Следовательно, на торте могло быть не более 7 розочек.

Задача 4 (Слайд10)

Разрежьте прямоугольник , ax2a на такие части,что из них можно было составить равновеликий ему:

1) прямоугольный треугольник;

2) квадрат.

Решение задачи понятно из рисунков 2 и 3.

Задача 5 (Слайд 11)

Разрежьте два квадрата 1х1 и 3х3 на такие части, чтобы из них можно было составить равновеликий им квадрат.

Комментарий. Эта задача – на перекраивание фигуры, состоящий из двух квадратов, в равновеликий ей квадрат. Площадь нового квадрата равна 3 2 +1 2 , значит, сторона квадрата, равновеликого сумме данных квадратов равна, т. е. является гипотенузой прямоугольника с катетами 3 и 1. Построение такого квадрата понятно из рисунка 4

Задача 6 (Слайд 12)

Разрежьте два произвольных квадрата на такие части, чтобы из них можно было составить равновеликий им квадрат.

Решение задачи понятно из рисунка 5. Площадь нового квадрата равна a 2 + b 2 , значит, сторона квадрата, равновеликого сумме данных квадратов равна

т. е. является гипотенузой прямоугольно- го треугольника с катетами a и b.

Задача 7 (Слайд 13)

Крест составлен из пяти квадратов: один квадрат в центре, а остальные четыре прилежат к его сторонам. Разрежьте его на такие части, чтобы из них можно было составить равновеликий ему квадрат.

Решение задачи понятно из рисунка 6.

Задача 8 (Слайд 14)

Крест составлен из пяти квадратов: один квадрат в центре, а остальные четыре прилежат к его сторонам. Как шестью такими крестами оклеить поверхность луба, каждая грань которого равновелика кресту.

Комментарий. Крест накладывается на грань (рис. 7), обрезать и переклеивать «торчащие уши» не надо – они переходят на соседнюю грань и оказываются в нужных местах. Завернув «торчащие уши» на соседние грани, можно таким образом заклеить поверхность куба шестью крестами (рис.8).

Задача 9 (Слайд 15)

Квадрат 8х8 разрезан на четыре части, как показано на рисунке 9. Из полученных частей составлен прямоугольник 13х5 . Площадь прямоугольника равна 65, а площадь квадрата – 64. Объясните, где ошибка.

Перед вами листок бумаги с изображением: а) треугольника, б) пятиконечной звезды, в) многоугольника в форме плывущего лебедя. В каждом случае придумайте , как сложить листок, чтобы после этого соответствующую фигуру можно было вырезать одним непрерывным прямолинейным разрезом ножницами.

Подсказка

Во всех случаях решение почти полностью состоит из шагов двух типов: складывать нужно или по биссектрисе какого-то из связанных с фигурой углов (чтобы «уменьшить» число оставшихся не на одной линии отрезков), или по перпендикуляру к одному из отрезков (чтобы «подогнать» его длину до нужной).

Решение

На рисунках ниже показано, как нужно складывать фигуры из условия задачи, чтобы потом вырезать каждую из них одним разрезом.

С треугольником более-менее все понятно: складываем по одной биссектрисе, потом - по другой (рис. 1).

Со звездой тоже довольно легко справиться. Сначала нужно сложить ее пополам вдоль оси симметрии (вполне естественное действие - раз уж можно «уполовинить» фигуру одним махом). Затем - совместить два луча звезды друг с другом, сложив по биссектрисе ее «внешнего» угла. После этого от контура останется всего три отрезка, которые уже несложно совместить (рис. 2).

С лебедем сложнее всего. Это понятно: фигура без симметрий, с большим числом сторон; поэтому потребуется большое число складок. Схема, по которой надо складывать, изображена на рис. 3. Простые пунктирные линии изображают складки «вниз», пунктиры точка-тире изображают складки «вверх». Сначала нужно наметить эти складки по отдельности, чтобы лист приобрел форму крыши дома, а только потом складывать лист в плоскую фигуру.

На серии фотографий показан весь процесс складывания:

О том, откуда возникает такая хитроумная система складок, читайте в послесловии.

Послесловие

Все предложенные в условии варианты - это всего лишь частные случаи общего вопроса, который звучит так:

Дан многоугольник на плоском листе бумаги, можно ли так сложить этот лист, чтобы многоугольник можно было вырезать одним прямым разрезом?

Оказывается, вне зависимости от формы многоугольника, ответ на этот вопрос всегда положительный: да, можно. (Разумеется, мы сейчас обсуждаем эту задачу с точки зрения математики и не касаемся «физической» стороны дела: слишком много раз лист бумаги невозможно сложить. Считается, что даже очень тонкую бумагу больше 7-8 раз перегнуть невозможно. Это почти так: при некотором старании можно сделать 12 перегибов, но больше уже вряд ли получится.)

Более того, если многоугольников нарисовано несколько, то лист все равно можно сложить так, чтобы все их можно было бы вырезать одним разрезом (и ничего лишнего бы не вырезалось). Все дело в том, что верна следующая теорема:

Пусть на листе бумаги нарисован произвольный граф . Тогда этот лист можно сложить так, чтобы данный граф можно было вырезать одним разрезом, и ничего лишнего вырезано не будет.

У этой теоремы алгоритмическое доказательство. То есть в ее доказательстве дается явный рецепт, как построить нужную систему складок.

Вкратце суть такова. Сначала мы должны построить прямолинейный скелет (straight skeleton). Это набор линий - траекторий вершин исходного многоугольника, - по которым они движутся при его специальном сжатии. Сжатие устроено так: мы двигаем стороны многоугольника «внутрь» с постоянной скоростью, чтобы при этом каждая сторона двигалась, не меняя своего направления. Как несложно убедиться, поначалу вершины будут ползти по биссектрисам углов многоугольника. То есть эта на первый взгляд странная конструкция просто обобщает идею, предложенную в подсказке: что надо стараться складывать по биссектрисам углов многоугольника. Отметим, что в процессе сжатия многоугольник может «развалиться» на части, как это произошло на рис. 5.

После того как скелет получен, из каждой его вершины нужно провести лучи, перпендикулярные к тем сторонам исходной фигуры, к которым их можно провести. Если луч натыкается на линию из скелета, то после пересечения он должен продолжиться не прямо, а вдоль своего зеркального отражения относительно этой линии. Система складок состоит из проведенных линий.

Подробнее об этом и о том, как определять направление складки («вверх» или «вниз»), можно прочитать в статье E. D. Demaine, M. L. Demaine, A. Lubiw, 1998. Folding and Cutting Paper . Краткую историю и еще один подход к решению задачи можно найти на страничке Эрика Демейна, одного из авторов доказательства теоремы. Также можно почитать чуть более популярный рассказ об этой теореме (к сожалению, тоже на английском). Ну и наконец, советую посмотреть мультфильм «Математических этюдов», в котором прекрасно видно, как нужно складывать треугольник и звезду, чтобы потом вырезать их одним разрезом.

Напоследок отмечу, что вопросы, подобные обсуждавшимся выше, поднимались уже довольно давно. Например, в японской книге 1721 года в качестве одной из задачек читателям предлагалось вырезать одним разрезом фигурку из трех объединенных ромбов (рис. 6). Позже метод вырезания звезды объяснял в своей книге знаменитый иллюзионист Гарри Гудини. Кстати, по легенде, как раз благодаря тому, что такую звезду можно быстро вырезать из бумаги или ткани, сейчас на флаге США мы видим именно пятиконечные звезды: швея Бетси Росс , которая, по преданию, сшила первый флаг, смогла убедить Джорджа Вашингтона, что их лучше использовать для флага, чем шестиконечные, которые изначально хотел использовать Вашингтон.

Стекло — это материал особенный и отличается от других строительных материалов.

Данный строительный материал обладает чрезвычайной хрупкостью и в своем большинстве является прозрачным.

Вот поэтому прежде, чем купить стекло и работать с ним, необходимо начать покупки именно с инструмента.

Но первый попавшийся инструмент покупать не следует, потому что он может быть некачественным и не сможет отрезать стекло так как надо.

Очень важно определить какой инструмент вам нужен, ведь стеклорезы бывают нескольких видов :

  1. Роликовые;
  2. Алмазные;
  3. Масляные;

Роликовые

В роликовом стеклорезе для резки стекла встроен специальный ролик, который изготовлен из очень прочного вольфрамокобальтового сплава. Обычный диаметр ролика составляет 6,6 мм, такой диаметр ролика позволяет осуществлять резку стекла толщиной до 4 мм.

Алмазные

Алмазный стеклорез оснащён соответственно маленьким алмазом, этот алмаз режет стекло. Хорошо известна твёрдость алмаза и поэтому его очень давно стали использовать для резки стекла.

В наше время, как и раньше, алмазный стеклорез считается лучшим инструментом для того чтобы отрезать стекло.

Масляные

Не так давно список стеклорезов пополнил масляный стеклорез.

Это по сути улучшенный роликовый инструмент, в ручку которого встроен резервуар для подачи смазки к ролику. Данная смазка связывает частицы, которые образовались при резке стекла при этом обеспечивая плавное движение. Данным стеклорезом можно разрезать стекло до 20 мм.

  1. Перед покупкой любого вида стеклореза лучше всего попросить продавца проверить .
  2. В том случае, если инструмент вас устраивает, то можете его покупать, но покупайте тот, который вам демонстрировали.

Как резать стекло

Лист стекла не так уж и просто отрезать, как это кажется с первого раза. Чтобы сделать отрез стекла, необходима подготовка.

Подготовка

  1. Абсолютно новое стекло достаточно будет хорошо очистить от пыли и вытереть насухо газетами, для таких работ ткань не подходит.
  2. В том случае, если предстоит резать старое стекло, то сначала его стоит обезжирить, после этого стекло хорошо моют с помощью воды и моющих средств.
  3. После всех вышеперечисленных манипуляций стекло необходимо будет просушить в закрытом и чистом помещении.

Раскрой стекла

Так же к подготовительным работам относят и раскрой стекла, и подготовку тары для сбора отходов. Тары должно быть две, то есть для сбора мелких отходов и для сбора более крупных, которые могут в дальнейшем для чего-то пригодиться.

Резку стекла лучше всего начинать с простого оконного стекла, а потом переходить на более сложные варианты.

Техника резки стекла


При применении алмазного стеклореза , необходимо его держать у самого низа ручки и проводить плавно линию по линейке, почти не надавливая на стекло.

При резке стекла роликовым стеклорезом требуется небольшое надавливание и при движении стеклореза на поверхности стекла появляется белёсая полоса и более глубокая, чем при применении алмазного инструмента.

Возможные ошибки

При реке стекла бывают две ошибки :

  1. Нажим стеклорезом бывает слишком сильным;
  2. Стеклорезом проводят по несколько раз по одному и тому же месту.

Старайтесь при резке стекла нажимать на инструмент равномерно по всей длине прореза.

Если вы при резке стекла заметили сколы, то это означает только то что вы слишком нажимаете на инструмент. Чтобы этого не было, уменьшите давление на стеклорез.

Ни в коем случае не проводите по порезанной линии дважды, это может испортить ваш инструмент.

Завершающий этап — ломка стекла

Тонкие стёкла ломают руками. Кусок стекла, который уже прорезали, необходимо положить на край стола, так, чтобы линия отреза находилась сверху и немного выступала за край стола, а основная часть стекла должна лежать на столе.

Нужно одной рукой прижать стекольное полотно, а второй нужно взяться за выступающую часть стекла и плавно рукой надавить на стекло вниз.

Если край, который нужно отломить, небольшой и руками его отломить невозможно применяют плоскогубцы.

Знание теории резки стела позволяет вам применить данные знания на практике. То есть вы можете взять небольшой кусок стекла и потренироваться на нём.

После того как вы попробуете резку стекла на практике в дальнейшем вы будете уже более уверены в своих навыках. Надеемся, что эта информация будет полезной. Желаем вам удачи и терпения!

, Конкурс «Презентация к уроку»

Презентация к уроку


































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Опыт показывает, что при использовании практических методов обучения удается сформировать у учащихся ряд мыслительных приемов, необходимых для правильного вычленения существенных и несущественных признаков при ознакомлении с геометрическими фигурами. развивается математическая интуиция, логическое и абстрактное мышление, формируется культура математической речи, развиваются математические и конструкторские способности, повышается познавательная активность, формируется познавательный интерес, развивается интеллектуальный и творческий потенциал.В статье приводится ряд практических задач на разрезания геометрических фигур на части с целью составить из этих частей новую фигуру. Ученики работают над заданиями в группах. Затем каждая группа защищает свой проект.

Две фигуры называются равносоставленными, если, определённым образом разрезав одну из них на конечное число частей, можно (располагая эти части иначе) составить из них вторую фигуру. Итак, метод разбиения основан на том, что всякие два равносоставленных многоугольника равновелики. Естественно поставить обратный вопрос: всякие ли два многоугольника, имеющих одинаковую площадь, равносоставлены? Ответ на этот вопрос был дан (почти одновременно) венгерским математиком Фаркашем Бойяи (1832г.) и немецким офицером и любителем математики Гервином (1833г.): два многоугольника, имеющих равные площади, равносоставленны.

Теорема Бойяи-Гервина гласит: любой многоугольник можно так разрезать на части, что из этих частей удастся сложить квадрат.

Задание 1.

Разрежьте прямоугольник a х 2a на такие части, чтобы из них можно было составить квадрат.

Прямоугольник ABCD разрежем на три части по линиям MD и MC (М – середина АВ)

Рисунок 1

Треугольник АMD переместим так, чтобы вершина М совместилась с вершиной С, катет АМ переместится на отрезок DС. Треугольник МВС переместим влево и вниз так, что катет МВ наложится на половину отрезка DС. (Рисунок 1)

Задание 2.

Разрезать равносторонний треугольник на части так, чтобы из них можно было сложить квадрат.

Обозначим данный правильный треугольник АВС. Необходимо разрезать треугольник АВС на многоугольники так, чтобы из них можно было сложить квадрат. Тогда эти многоугольники должны иметь по крайней мере по одному прямому углу.

Пусть К – середина СВ, Т – середина АВ, точки М и Е выберем на стороне АС так, что МЕ=АТ=ТВ=ВК=СК=а , АМ=ЕС=а /2.

Рисунок 2

Проведем отрезок МК и перпендикулярные к нему отрезки ЕР и ТН. Разрежем треугольник на части вдоль построенных линий. Четырехугольник КРЕС повернем по часовой стрелке относительно вершины К так, что СК совместится с отрезком КВ. Четырехугольник АМНТ повернем по часовой стрелке относительно вершины Т так, что АТ совместится с ТВ. Треугольник МЕР переместим так, что в результате получится квадрат. (Рисунок 2)

Задание 3.

Разрезать квадрат на части так, чтобы из них можно было сложить два квадрата.

Обозначим исходный квадрат ABCD. Отметим середины сторон квадрата – точки M, N, K, H. Проведем отрезки МТ, НЕ, КF и NР – части отрезков МС, НВ, КА и ND соответственно.

Разрезав квадрат ABCD по проведенным линиям, получим квадрат PTEF и четыре четырехугольника MDHT, HCKE, KBNF и NAMP.

Рисунок 3

PTEF – уже готовый квадрат. Из оставшихся четырехугольников составим второй квадрат. Вершины A, B, C и D совместим в одну точку, отрезки АМ и ВК, MD и КС, BN и СН, DH и АN совместятся. Точки Р, Т, Е и F станут вершинами нового квадрата. (Рисунок 3)

Задание 4.

Из плотной бумаги вырезаны равносторонний треугольник и квадрат. Разрезать эти фигуры на многоугольники так, чтобы из них можно было сложить один квадрат, при этом части должны полностью его заполнять и не должны пересекаться.

Треугольник разрежем на части и составим из них квадрат так, как показано в задании 2. Длина стороны треугольника – 2а . Теперь следует разделить на многоугольники квадрат так, чтобы из этих частей и того квадрата, который получился из треугольника, составить новый квадрат. Возьмем квадрат со стороной 2а , обозначим его LRSD. Проведем взаимно перпендикулярные отрезки UG и VF так, что DU=SF=RG=LV. Разрежем квадрат на четырехугольники.

Рисунок 4

Возьмем квадрат, составленный из частей треугольника. Выложим четырехугольники – части квадрата так, как показано на рисунке 4.

Задание 5.

Крест составлен из пяти квадратов: один квадрат в центре, а остальные четыре прилежат к его сторонам. Разрезать его на такие части, чтобы из них можно было составить квадрат.

Соединим вершины квадратов так, как показано на рисунке 5. Отрежем “внешние” треугольники и переместим их на свободные места внутри квадрата АВСК.

Рисунок 5

Задание 6.

Перекроить два произвольных квадрата в один.

На рисунке 6 показано, как нужно разрезать и переместить части квадратов.

Вступительное слово учителя:

Небольшая историческая справка: Задачами на разрезание увлекались многие ученые с древнейших времен. Решения многих простых задач на разрезание были найдены еще древними греками, китайцами, но первый систематический трактат на эту тему принадлежит перу Абуль-Вефа. Геометры всерьез занялись решением задач на разрезание фигур на наименьшее число частей и последующее построение другой фигуры в начале 20 века. Одним из основателей этого раздела был знаменитый основатель головоломок Генри Э.Дьюдени.

В наши дни любители головоломок увлекаются решением задач на разрезание прежде потому, что универсального метода решения таких задач не существует, и каждый, кто берется их решать, может в полной мере проявить свою смекалку, интуицию и способность к творческому мышлению. (На занятии мы будем указывать лишь один из возможных примеров разрезания. Можно допустить, что у учащихся может получиться какая-то другая верная комбинация -- не надо этого бояться).

Данное занятие предполагается провести в виде практического занятия. Разбить участников кружка на группы по 2-3 человека. Каждой из групп предоставить заранее подготовленные учителем фигуры. Учащиеся располагают линейкой (с делениями), карандашом, ножницами. Разрешается производить с помощью ножниц лишь прямолинейные разрезы. Разрезав какую-нибудь фигуру на части, необходимо составить другую фигуру из тех же частей.

Задачи на разрезание:

1). Попробуйте разрезать изображенную на рисунке фигуру на 3 равные по форме части:

Подсказка: Маленькие фигуры очень похожи на букву Т.

2). Разрежьте теперь эту фигуру на 4 равные по форме части:

Подсказка: Легко догадаться, что маленькие фигурки будут состоять из 3 клеточек, а фигур из трех клеточек не так много. Их всего два вида: уголок и прямоугольник.

3). Разделите фигуру на две одинаковые части, и из полученных частей сложите шахматную доску.

Подсказка: Предложить начать выполнять задание со второй части, как бы получить шахматную доску. Вспомнить, какую форму имеет шахматная доска (квадрат). Посчитать имеющееся количество клеточек в длину, в ширину. (Напомнить, что клеток должно быть 8).

4). Попробуйте тремя движениями ножа разрезать сыр на восемь равных кусков.

Подсказка: попробовать разрезать сыр вдоль.

Задачи для самостоятельного решения:

1). Вырежьте квадрат из бумаги и выполните следующее:

· разрежьте на такие 4 части, из которых можно составить два равных меньших квадрата.

· разрежьте на пять частей - четыре равнобедренных треугольника и один квадрат - и сложите их так, чтобы получилось три квадрата.